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ON THE RESIDUAL STRESSES IN THE VICINITY OF A CYLINDRICAL

DISCONTINUITY IN A VISCOELASTOPLASTIC MATERIAL

UDC 539.3A. A. Burenin, L. V. Kovtanyuk, and E. V. Murashkin

The one-dimensional deformation of a material and subsequent unloading in the vicinity of a single
cylindrical discontinuity is calculated using the theory of large viscoelastoplastic strains. Emphasis
is on the formation of a residual stress field during the loading–unloading process and the effect of
the viscous properties of the material on the level and distribution of these stresses. A comparison is
performed with results of solution of the corresponding problem using the theory of large elastoplastic
strains.
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Introduction. The formation of a residual stress field in the vicinity of a cylindrical discontinuity has been
previously considered for the model of large elastoplastic strains [1]. It turned out that the assumption of an ideal
nature of plastic flow and allowance for only the elastic properties of the material during its deformation before
plastic flow and during unloading are responsible for the adjustability of the defect to cyclic loads. In other words,
irreversible strains near the defect are not accumulated with increase in the number of cycles, and residual stresses
in its vicinity remain unchanged after each unloading. It is obvious that allowance for the viscous properties of the
material during its irreversible deformation leads to the deceleration of plastic flow and, hence, to the development
of a discontinuity. The rate of discontinuity development is the main factor that determines the fatigue strength of
the article working under cyclic loads. The manifestation of viscous properties in the deformation stage preceding
plastic flow or in the unloading stage is less obvious. Below, we consider exactly this case, assuming, as in [1], that
the plastic flow is ideal. We note that the displacements of points of the medium being deformed in the vicinity of
the discontinuity are commensurable with the defect size; therefore the assumption of small strains cannot be used.
In the vicinity of the discontinuity they are always larger.

1. Basic Modeling Relations. One of the goals of the present study is to compare the results obtained
with the results of solution of the problem in question for the model of an ideal elastoplastic medium. As noted
above, this problem is considered in [1] using the model of large elastoplastic strains proposed in [2]. Therefore,
the given mathematical model is chosen as the basis for the construction of further modeling relations. In [2], the
splitting of the total Almansi strains dij into the reversible component eij and irreversible component pij is based
on the requirement that the components of the latter vary during unloading in a similar manner as in the case of
rigid body motion. Therefore, we define the components of the total Almansi strains using the equations of their
transfer [3]:

dpij

dt
= εp

ij − εp
ikpkj − pikεp

kj + rikpkj − pikrkj ,

deij

dt
= εij − εp

ij − (1/2) (eikvk,j + vk,iekj − rikekj + eikrkj − εp
ikekj − eikεp

kj), (1.1)

2εij = vi,j + vj,i, vi =
∂ui

∂t
+ vjui,j , rij = (1/2) (vi,j − vj,i) + Fij(est, εst).

Institute of Automatics and Control Processes, Far East Division, Russian Academy of Sciences, Vladivostok
690041; burenin@iacp.dvo.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 2,
pp. 110–119, March–April, 2006. Original article submitted May 30, 2005.

0021-8944/06/4702-0241 c© 2006 Springer Science +Business Media, Inc. 241



Relations (1.1) are written in Euler variables in rectangular Cartesian coordinates. Here ui are the components of
the displacement vector; the components of the skew tensor Fij are not written and explicit expressions for them
are given in [2]. The first relation in (1.1) can be treated as the definition of the plastic strain rate tensor εp

ij . This
is the source tensor in the transfer equation for the tensor pij , and, hence, the relation is a definition of the objective
derivative that links pij and εp

ij . It is possible to show (see [2]) that the components of the Almansi strain tensor
dij are calculated by the relations

dij = eij + pij − (1/2)eikekj − eikpkj − pikekj + eikpksesj . (1.2)

Next we assume that the medium being deformed is incompressible. The relationship among the stress
deviators, strains, and strain rates can be given by the simple linear relation

τij + α
Dτij

Dt
= 2µmij + 2βεij for pij ≡ 0,

τij + α
Dτij

Dt
= 2µme

ij + 2βεij for pij �= 0,

τij = σij − (1/3)σkkδij = σij − pδij , mij = dij − (1/3)dkkδij ,

(1.3)

me
ij = eij − (1/2)eikekj − (1/3)ekkδij + (1/6)ekseskδij .

Here α, µ, and β are constants of the material and D/Dt is the Jaumann derivative. It should be noted that the
first relation in (1.3) is the limiting one for the second as the irreversible strains tend to zero.

Applying the Mises maximum principle, we have the associated plastic-flow law

εp
ij = λ

∂f

∂σij
, λ � 0. (1.4)

Below as the plastic potential, we use the Tresca prism

f(σij) = max |σi − σj | − 2K = 0. (1.5)

To close system (1.1)–(1.5) in the isothermal case considered, it suffices to write the usual kinematic relations
and differential consequences of the conservation laws.

2. Formulation of the Problem. Initial Conditions of Plastic Flow. The microcrack modeling the
discontinuity is considered long enough compared to its cross-sectional size. If the effect of the microcrack tips on
the deformation of the material away from them is ignored, the deformation can be considered one-dimensional. To
simplify the problem further, we assume that the defect is a cylindrical cavity of radius r0 and the compression of
the material is specified by the pressure on a cylindrical surface of initial radius R0 � r0:

σrr|r=R = −p(t). (2.1)

Here R(t) is the current radius of the outer cylindrical surface and σrr is the stress tensor component in cylindrical
coordinates (r, θ, z). The boundary surface of the defect is considered free:

σrr|r=s = 0 (2.2)

[s(t) is the current radius of the cylindrical discontinuity]. As the function p(t) increases, the material undergoes
viscoelastic deformation until this function reaches the threshold value p(t0) = p0. At the same time t0, the stress
state on the boundary r = s(t0) = s0 reaches the loading surface (1.5) which is given by the equation

σrr − σθθ = 2K. (2.3)

Ignoring inertia effects, we use this state as the initial one for the subsequent process of plastic flow. The
incompressibility state of the material is given by

(1 − u,r)
(
1 − u

r

)
= 1, u,r =

∂u

∂r
, (2.4)

where u(r) = ur is the single nonzero displacement component, which allows us to determine the kinematics of the
medium with accuracy up to an arbitrary function of time ϕ = ϕ(t) [s(t) or R(t)]:
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u = r − (r2 + ϕ)1/2, ϕ = R2
0 − R2 = r2

0 − s2,

2drr = 1 − η−1, 2dθθ = 1 − η, η = 1 + r−2(R2
0 − R2), (2.5)

v = vr = −ϕ̇/2r.

Here the dot denotes the derivative with respect to time. With allowance for (2.5), the first equality (1.3) implies

τrr + α
(∂τrr

∂t
− ϕ̇

2r
τrr,r

)
=

2µ

3

(
1 −

(
1 +

ϕ

r2

)−1)
+ µ

ϕ

3r2
+ β

ϕ̇

r2
,

τθθ + α
(∂τθθ

∂t
− ϕ̇

2r
τθθ,r

)
= −µ

3

(
1 −

(
1 +

ϕ

r2

)−1)
− 2µ

ϕ

3r2
− β

ϕ̇

r2
.

(2.6)

In (2.6), (1+r−2ϕ)−1 can be regarded as the sum of an infinitely decreasing geometric progression; therefore,
τrr and τθθ can be written as

τrr =
∞∑

n=1

an(t)
n!r2n

, τθθ =
∞∑

n=1

bn(t)
n!r2n

, (2.7)

where an(t) and bn(t) are unknown functions. Replacing the sum of a geometric progression in (2.6) by an infinite
series and taking into account (2.7), we obtain

T (an) − µ
ϕ

r2
− β

ϕ̇

r2
+

2µ

3
L(r, ϕ) = 0, T (bn) + µ

ϕ

r2
+ β

ϕ̇

r2
− µ

3
L(r, ϕ) = 0,

T (an) =
∞∑

n=1

an + αȧn

n!r2n
+ αϕ̇

∞∑
n=1

an

(n − 1)!r2n+2
, (2.8)

L(r, ϕ) =
∞∑

n=2

(−1)n
( ϕ

r2

)n

.

The system of differential equations (2.6) for τrr(r, t), τθθ(r, t), and ϕ(t) is closed by the equation obtained
from the equation of motion of the medium by integrating over r in the range s � r � R using (2.5) and conditions
(2.1) and (2.2). With allowance for (2.7), this equation can be written as

H(an, bn, R, s) + M(ϕ, s, R) + p(t) = 0,

H(an, bn, R, s) =
∞∑

n=1

an − bn

2nn!

( 1
R2n

− 1
s2n

)
, (2.9)

M(ϕ, s, R) =
1
2

ρ
(
ϕ̈ ln(sR−1) +

1
4

( 1
R2

− 1
s2

)
ϕ̇2

)
.

Here ρ is the density of the medium.
Equating the coefficients of the same powers of r in (2.7) and (2.8) and using (2.9), we obtain the following

infinite recursive system of ordinary differential equations for the functions of time ϕ(t), an(t), and bn(t):

ȧ1 = α−1(−a1 + µϕ + βϕ̇),

ḃ1 = α−1(−b1 − µϕ − βϕ̇),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.10)

ȧn = α−1(−an − αn(n − 1)ϕ̇an−1 − (2µ/3)(−1)nn!ϕn),

ḃn = α−1(−bn − αn(n − 1)ϕ̇bn−1 + (µ/3)(−1)nn!ϕn).

Since the deformation begins from the free state, the initial conditions of the problem for the given system
of ordinary differential equations are homogeneous: ϕ(0) = ϕ̇(0) = an(0) = bn(0) = 0. Truncation of series (2.7) to
a finite number of terms makes it possible to solve system (2.10) numerically. Calculations show that despite the
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small sizes of the discontinuity, series (2.7) converge fairly rapidly. In numerical calculations, it suffices to take six
terms of the series.

The problem described above is auxiliary. Calculations using the proposed scheme should be stopped when
a region of plastic flow begins to form, which occurs, as noted above, at the time t = t0, when the loading pressure
reaches the threshold value p = p0. At this time, condition (1.5) is satisfied on the boundary of the discontinuity
r = s0. In the notation adopted for the case considered, this condition is written as

∞∑
n=1

an − bn

n!s2n
0

= 2K. (2.11)

The radius s0 at which plastic flow begins is calculated according to (2.11). The distributions of the stress–
strain parameters calculated in such a manner are the initial conditions for the calculation of the parameters of the
further deformation.

3. Plastic Flow. Let the loading force p(t) continue to grow, so that

σrr|r=R(t) = −p0 − g(t), g(t0) = 0, g(t) > 0 for t > t0. (3.1)

At t > t0, the material in the region s(t) � r � m(t) is in the plastic state. The unknown function m(t) specifies
the motion of the boundary of the plastic flow region. The equation of motion of the medium should be integrated
separately in the plastic flow region and in the viscoelastic strain region. Using formula (2.7) for the stresses and
integrating, we obtain

σrr = 2K ln (sr−1) + M(ϕ, s, r), σθθ = σrr − 2K (3.2)

in the plastic flow region and

σrr = H(an, bn, r, R) + M(ϕ, R, r) − p0 − g(t), σθθ = σrr −
∞∑

n=1

an − bn

n!r2n
(3.3)

in the viscoelastic strain region.
Relations (3.2) and (3.3) define the stress state in the material with accuracy up to the unknown functions

of time ϕ(t), an(t), and bn(t). To calculate the latter and determine the function m(t), which specifies the motion
of the elastoplastic boundary, we use the conditions of equality of stresses (3.2) and (3.3) on this boundary [at
r = m(t)]. As a result, we have the following equations for ϕ(t) and m(t):

H(an, bn, m, R) + M(ϕ, R, s) − p0 − g(t) − 2K ln(sm−1) = 0,

(3.4)

ṁ = m
(
− 2K

α
+

ȧ1 − ḃ1

m2
+

a1 − b1

αm2
−

∞∑
n=2

ϕ(an−1 − bn−1)
(n − 2)!m2n

+
µ

3α
L(m, ϕ)

)( ∞∑
n=1

2n(an − bn)
n!m2n

)−1

.

Relations (3.4) need to be supplemented by system (2.10). Truncation of the resulting relation to a finite
number of an and bn allows the Cauchy problem for this system of ordinary differential equations to be studied
numerically. It should be noted that in this case the initial conditions are the values of the functions obtained by
solving the problem in Sec. 2 for the time t = t0 (for p = p0). Using the coefficients an and bn of series (2.7) found
by solving the indicated system of equations and the functions ϕ and m, we can construct the strain and stress
fields at any time. The total strains are determined from the known displacements (2.5):

drr =
1
2

ϕ

r2 + ϕ
, dθθ = − ϕ

2r2
. (3.5)

The strain components in the region of viscoelastic strain are calculated according to (1.2) in the form

err = 1 −
√

1 − 2drr, eθθ = err/(err − 1). (3.6)

To calculate the viscoelastic strain components in the plastic region, we use the second formula in (1.3),
which in our case implies

2µ(err − eθθ) − µ(e2
rr − e2

θθ) + 2βϕ̇/r2 = 2K. (3.7)
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With allowance for (3.6), for the viscoelastic strain components we have the relations

err = 1 − q1/2, eθθ = 1 − q−1/2,

q = q1 +
√

q2
1 + 1, q1 = −K/µ + (β/µ)ϕ̇/r2.

(3.8)

The plastic strains are calculated from the total [see (3.5)] and viscoelastic [see (3.8)] strains:

prr = (2drr + q − 1)/(2q), pθθ = q(2dθθ + q−1 − 1)/2. (3.9)

Relations (3.8) and (3.9) define the distributions of the total strain components at any time in terms of the
previously found function ϕ(t). Data on these distributions are required to calculate the unloading process.

4. Unloading State. For the unloading of the material, we impose the following boundary conditions:

σrr|r=R(t) = −p1 + h(t), σrr|r=s(t) = 0. (4.1)

Here the constant p1 is the value of the loading pressure attained during loading: p1 = −p0 − g(t1). The time
t = t1 is the moment when loading ceases and unloading begins. The monotonic function h(t), defined for t � t1,
is such that h(t1) = 0 and h(t) > 0. In the case where p1 is large enough, the unloading process can initiate new
plastic flow [4] because the stress state on the boundary of the defect reaches the loading surface (1.5) under tensile
internal forces [σθθ = 2K at r = s(t)]. Let us consider this in a more general case. We assume that repeated plastic
flow during unloading begins at the time t = t2, when R(t2) = R2 and s(t2) = s2.

For the times t1 � t � t2, the following relations are valid:

u = r − (r2 + γ)1/2, γ = ϕ(t) = R2
0 − R2(t) = r2

0 − s2(t),

m2(t) = m2
1 − γ + γ1, m1 = m(t1), γ1 = ϕ(t1).

(4.2)

In the region m(t) � r � R(t), where there are no plastic strains, the stresses are calculated by formulas
(3.3). Although during unloading in the time interval considered, a plastic region does not develop, the spatial
coordinate of the boundary of the region m(t) changes [m(t) �= m1], in contrast to the material coordinate, because
of a change in the strain state. In the region s � r � m, the accumulated plastic strains are constant at each point
of the medium (for each value of the material coordinate), but for the same value of the spatial coordinate, they
are different. The spatial Eulerian coordinate r is linked to the material Lagrangian coordinate r1 of a point of the
medium that is fixed at the moment of the beginning of unloading by the relation r2 = r2

1 − γ + γ1. Thus, plastic
strains in the region s � r � m should be calculated by relations (3.9) taking into account the given circumstance.
Finally, elastic strains are determined from the known total and plastic strains:

err = 1 −
√

c−1, eθθ = 1 −√
c,

c =
1
q

(
1 +

γ − γ1

r2

)
, q = −K

µ
+

√
1 +

(K

µ

)2

.

(4.3)

As in the viscoelastic region, the stress deviator components in the plastic region are written as

τrr =
∞∑

n=0

zn(t)
n!r2n

, τθθ =
∞∑

n=0

wn(t)
n!r2n

. (4.4)

This representation allows us to integrate the equation of motion in the region s � r � m and to obtain the following
relations for the stress components:

σrr = H(zn, wn, r, s) + (z0 − w0) ln (sr−1) + M(γ, s, r),

σθθ = σrr −
∞∑

n=0

zn − wn

n!r2n
.

(4.5)
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Fig. 1. Variation in the boundary of the defect during loading.

Fig. 2. Variation in the boundary of the defect during unloading.

Expanding c−1 in (4.3) in a series in even negative powers of r and using (4.2), from the second relation
(1.3) for the time interval considered, we obtain

z0 + αż0 + T (zn) =
2µ

3

(1
2

+
1
2q

+
γ − γ1

2qr2
− q

∞∑
n=0

(γ1 − γ)n

r2n

)
+ β

γ̇

r2
,

w0 + αẇ0 + T (wn) =
2µ

3

(1
2
− 1

q
− γ − γ1

qr2
+

q

2

∞∑
n=0

(γ1 − γ)n

r2n

)
− β

γ̇

r2
.

(4.6)

Comparing the coefficients at the same powers of r, we write the ordinary differential equations

ż0 = α−1(−z0 + (2µ/3)((1 + 1/q)/2 − q)),

ẇ0 = α−1(−w0 + (2µ/3)((1 + q)/2 − 1/q)),

ż1 = α−1(−z1 + (2µ/3)(γ − γ1)(1/(2q) + q) + βγ̇),

ẇ1 = α−1(−w1 + (2µ/3)(γ − γ1)(1/q + q/2) − βγ̇),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

żn = α−1(−zn − αn(n − 1)γ̇zn−1 − (2µ/3)qn!(γ1 − γ)n),

ẇn = α−1(−wn − αn(n − 1)γ̇wn−1 + (µ/3)qn!(γ1 − γ)n).

(4.7)

System (2.10) and (4.7) must be supplemented by the ordinary differential equation that follows from the
condition of equality of the stresses σrr on the elastoplastic boundary r = m. In view of (4.5), this equation can be
written as

(z0 − w0) ln (sm−1) + H(zn, wn, m, s) − H(an, bn, m, R) + M(γ, R, s) − p1 + h(t) = 0. (4.8)

The closed system of equations (2.10), (4.7), and (4.8) subject to the constraints due to the finiteness of
the number of terms in series (2.7) and (4.4) and the initial conditions at t = t1 [γ = γ1, γ̇ = γ̇(t1), an = an(t1),
bn = bn(t1), zn = zn(t1) = 0, and wn = wn(t1) = 0] is solved up to the time t2 when the region of repeated plastic
flow begins to spread from the boundary of the defect s2. In the adopted notation, the condition of formation of
this region (the Tresca plastic condition) under continuing unloading is written as

∞∑
n=0

zn − wn

n!s2n
2

= −2K. (4.9)
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Fig. 3. Change in the boundaries of the region of repeated plastic flow.
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Fig. 4. Distribution of the residual radial stresses (a) and tangential stresses (b).

The values of the functions γ2 = γ(t2), γ̇2 = γ̇(t2), an(t2), bn(t2), zn(t2), and wn(t2) become the initial
conditions for the subsequent deformation process [under conditions (4.1)] with the region of repeated plastic
flow developing during unloading. We assume that the plastic flow region is bounded by cylindrical surfaces:
s(t) � r � f(t) [f(t) is the boundary of the region of repeated plastic flow]. The equation of motion of the medium
should be integrated in three regions: s � r � f , f � r � m, and m � r � R. We note that m �= m2 = m(t2)
although the plastic strains in the region f � r � m are constant.
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In the region m � r � R, plastic strains are absent and the stresses are defined by relations (3.3), in which
the loading force p0 + g(t) should be replaced by its value for unloading p1 − h(t). In the region f � r � m, where
the plastic strains do not change, the stresses can be calculated by relations (4.5):

σrr = (z0 − w0) ln(mr−1) + H(an, bn, m, R) + H(zn, wn, r, m) + M(γ, R, m)− p1 + h(t),

σθθ = σrr −
∞∑

n=0

zn − wn

n!r2n
.

(4.10)

In the region of repeated plastic flow s � r � f , integration of the equation of motion yields

σrr = −2K ln(sr−1) + M(γ, s, r),

σθθ = σrr + 2K.
(4.11)

The condition of equality of the radial stresses σrr (4.10) and (4.11) on the boundary of the region of repeated
plastic flow r = f(t) implies the equation

(z0 − w0) ln (mf−1) + H(an, bn, m, R) + H(zn, wn, f, m) + M(γ, R, s) − p1 + h(t) + 2K ln (sf−1) = 0. (4.12)

The motion of the boundary r = f(t) of the region of repeated plastic flow is specified by the equation

ḟ = f
(2K

α
+

ż1 − ẇ1

f2
+

z0 − w0

α
+

z1 − w1

αf2
+

2ηγ̇

f2

−
∞∑

n=2

( γ̇(zn−1 − wn−1)
(n − 2)!f2n

+
qµ

αf2n
(γ1 − γ)n

))( ∞∑
n=1

2n(zn − wn)
n!f2n

)−1

. (4.13)

The ordinary differential equations (4.12) and (4.13) close the infinite system of differential equations (2.10)
and (4.7) for the functions γ, f , an, bn, zn, and wn. Truncating series (2.7) and (4.4) to a finite number of terms and
using the values of these functions at the time t2 as the initial conditions, one can solve this problem numerically.

Let us consider some results of calculations for the following constants of the problem: K/µ = 0.003,
r0/R0 = 0.03, and η/(µα) = 3 (shear modulus µ = 8.05 · 1010). Figure 1 gives the variation in the boundary of the
defect during loading. Figure 2 shows the difference in the defect size for unloading between the case of an ideal
elastoplastic medium [1] (the solid curve in Figs. 2–4) and with allowance for viscosity during elastic deformation
and during unloading (the dashed curve in Figs. 2–4). Allowance for the creep of the material leads to a decrease in
the radius of the defect and in the size of the region of repeated plastic flow during unloading (Fig. 3). At the same
time, the presumed significant decrease in the level of residual stresses due to their relaxation during unloading was
not found numerically (Fig. 4). Although the numerical calculations performed in the present study and in [1] used
different models, their results differ quantitatively only slightly.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00537-a) and the
foundation “Leading Scientific Schools of Russia” (Grant No. NSh-890.2003.1).
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